题目内容
【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB.
【答案】(1)(2)15
【解析】
试题分析:(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.
(2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB的面积减去三角形MCE的面积减去三角形OBC的面积求得.
试题解析:(1)依题意:,
解得
∴抛物线的解析式为y=-x2+4x+5
(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1,
∴B(5,0).
由y=-x2+4x+5=-(x-2)2+9,得M(2,9)
作ME⊥y轴于点E,
可得=(2+5)×9-×4×2-×5×5=15.
练习册系列答案
相关题目