题目内容

已知多项式x2+ax+1与2x+b的乘积中含x2的项的系数为3,含x项的系数为2,求a+b的值.

解:根据题意得:(x2+ax+1)(2x+b)=2x3+(b+2a)x2+(ab+2)x+b,
∵乘积中含x2的项的系数为3,含x项的系数为2,
∴b+2a=3,ab+2=2,
解得:a=,b=0;a=0,b=3,
则a+b=或3.
分析:原式利用多项式乘以多项式法则计算,合并后根据题意求出a与b的值,即可求出a+b的值.
点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网