题目内容

【题目】已知外切于的外公切线,为切点,若,则的距离是( )

A. B. C. D.

【答案】B

【解析】

先画图,由AB是⊙O1和⊙O2的外公切线,则∠O1AB=∠O2BA=90°,再由O1A=O1M,O2B=O2M,得∠O1AM=∠O1MA,∠O2BM=∠O2MB,则∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,则∠AMB=∠BMO2+∠AMO1=90°,再由勾股定理求出AB边上的高.

如图,


∵AB是⊙O1和⊙O2的外公切线,∴∠O1AB=∠O2BA=90°,
∵O1A=O1M,O2B=O2M,∴∠O1AM=∠O1MA,∠O2BM=∠O2MB,
∴∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,
∴∠AMB=∠BMO2+∠AMO1=90°,
∴AM⊥BM,
∵MA=4cm,MB=3cm,
∴由勾股定理得,AB=5cm,

由三角形的面积公式,M到AB的距离是.故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网