ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿Èçͼ,ÔÚƽÃæÖ±½Ç×ø±êϵÖÐ,A(8,6),C(0,10)£¬AC=CO£¬Ö±ÏßAC½»xÖáÓÚµãM£¬½«¡÷AOCÑØÖ±ÏßAC·ÕÛ£¬Ê¹µÃµãOÂäÔÚµãB´¦£¬Á¬½ÓAB½»xÖáÓÚD£¬¶¯µãP´ÓµãO³ö·¢£¬ÒÔ2¸öµ¥Î»³¤¶È/ÃëµÄËÙ¶ÈÑØÉäÏßOAÔ˶¯£»Í¬Ê±¶¯µãQ´ÓA³ö·¢ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØÉäÏßABÔ˶¯¡£
(1)ÇóBµãµÄ×ø±ê£»
(2)Á¬½ÓPB£¬ÉèµãPµÄÔ˶¯Ê±¼äΪtÃ룬¡÷PABµÄÃæ»ýΪS£¬ÇóSÓëtµÄ¹Øϵʽ£¬²¢Ö±½ÓдtµÄÈ¡Öµ·¶Î§£»
(3)ÔÚµãP¡¢QÔ˶¯¹ý³ÌÖУ¬µ±tΪºÎֵʱ£¬¡÷APQÊÇÒÔPQΪµ×±ßµÄµÈÑüÈý½ÇÐÎ?²¢Ö±½Óд³öQµã×ø±ê¡£
¡¾´ð°¸¡¿£¨1£©£¨8£¬-4£©£»£¨2£©s=16t+80£¬0t5£»£¨3£©t=£¬(8, )
.
¡¾½âÎö¡¿
£¨1£©¸ù¾Ý·ÕÛµÄÐÔÖÊ£¬¿ÉµÃOA=AB£¬OC=BC£¬¸ù¾ÝÁâÐεÄÅж¨ÓëÐÔÖÊ£¬¿ÉµÃ £»
£¨2£©¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃOB£¬ACµÄ³¤£¬¸ù¾ÝÁâÐεÄÃæ»ý£¬¿ÉµÃBEµÄ³¤£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃº¯Êý¹Øϵʽ£»
¸ù¾ÝOPÓëOAµÄ¹Øϵ£¬¿ÉµÃ×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£»
£¨3£©¸ù¾ÝÏ߶εĺͲ¿ÉµÃAP£¬¸ù¾ÝµÈÑüÈý½ÇÐεĶ¨Ò壬¿ÉµÃ¹ØÓÚtµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£®
(1)ÓÉ¡÷AOCÑØÖ±ÏßAC·ÕÛ£¬Ê¹µÃµãOÂäÔÚµãB´¦£¬µÃ
OA=AB£¬OC=BC.
ÓÉAC=CO=10£¬µÃ
AO=CO=CB=BA=10.
ËıßÐÎAOCBÊÇÁâÐΣ¬
,¼´x=8£¬
,¼´y=610=4£¬
¼´Bµã×ø±ê(8,4)£»
(2)Èçͼ×÷BE¡ÍOAÓÚE£¬
Óɹ´¹É¶¨Àí£¬µÃ
OB=,AC= =8£¬
ÓÉÁâÐεÄÃæ»ý£¬µÃ
OABE=ACOB£¬
¼´BE=4¡Á8¡Â10=16£¬
OP=2t£¬AP=102t£¬
S¡÷ABP= APBE= (102t)¡Á16=16t+80£¬
SÓëtµÄ¹ØϵʽΪs=16t+80£¬
ÓÉOPAO£¬¼´2t10£¬½âµÃt5£¬
ÓÉʱ¼äÊǷǸºÊý£¬µÃt0£¬
×Ô±äÁ¿µÄÈ¡Öµ·¶Î§ÊÇ0t5£»
(3)ÓÉOP=2t£¬µÃAP=OAOP=102t.
AQ=t.
ÓÉAP=AQ£¬µÃ
102t=t.
½âµÃt=£¬
µ±t=ʱ£¬¡÷APQÊÇÒÔPQΪµ×±ßµÄµÈÑüÈý½ÇÐΣ»
ÓÉAB¡ÎyÖᣬµÃ
QµãµÄºá×ø±êΪ8,×Ý×ø±êΪ6= £¬
¼´QµãµÄ×ø±êΪ(8, )