题目内容
【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图(1)的位置时, 求证:①△ADC≌△CEB.②DE=AD+BE;
(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.
【答案】
(1)解:①∵AD⊥MN,BE⊥MN,
∴∠ADC=∠ACB=90°=∠CEB,
∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
∵在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS);
②∵△ADC≌△CEB,
∴CE=AD,CD=BE,
∴DE=CE+CD=AD+BE
(2)证明:∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=∠ACB=90°,
∴∠CAD=∠BCE,
∵在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS);
∴CE=AD,CD=BE,
∴DE=CE﹣CD=AD﹣BE
(3)解:当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE﹣AD.
理由如下:∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=∠ACB=90°,
∴∠CAD=∠BCE,
∵在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS),
∴CE=AD,CD=BE,
∴DE=CD﹣CE=BE﹣AD
【解析】(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE﹣CD=AD﹣BE;(3)运用(2)中的方法即可得出DE,AD,BE之间的等量关系是:DE=BE﹣AD.