题目内容

【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图(1)的位置时, 求证:①△ADC≌△CEB.②DE=AD+BE;
(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.

【答案】
(1)解:①∵AD⊥MN,BE⊥MN,

∴∠ADC=∠ACB=90°=∠CEB,

∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,

∴∠CAD=∠BCE,

∵在△ADC和△CEB中,

∴△ADC≌△CEB(AAS);

②∵△ADC≌△CEB,

∴CE=AD,CD=BE,

∴DE=CE+CD=AD+BE


(2)证明:∵AD⊥MN,BE⊥MN,

∴∠ADC=∠CEB=∠ACB=90°,

∴∠CAD=∠BCE,

∵在△ADC和△CEB中,

∴△ADC≌△CEB(AAS);

∴CE=AD,CD=BE,

∴DE=CE﹣CD=AD﹣BE


(3)解:当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE﹣AD.

理由如下:∵AD⊥MN,BE⊥MN,

∴∠ADC=∠CEB=∠ACB=90°,

∴∠CAD=∠BCE,

∵在△ADC和△CEB中,

∴△ADC≌△CEB(AAS),

∴CE=AD,CD=BE,

∴DE=CD﹣CE=BE﹣AD


【解析】(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE﹣CD=AD﹣BE;(3)运用(2)中的方法即可得出DE,AD,BE之间的等量关系是:DE=BE﹣AD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网