题目内容

【题目】如图,某小区有一长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为( )米.

A. 2B. 1C. 81D. 8

【答案】B

【解析】

设人行道的宽度为x米,则两块矩形绿地可合成长为(18-3x)米、宽为(6-2x)米的矩形,根据矩形的面积公式结合两块绿地的面积之和为60平方米,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.

解:设人行道的宽度为x米,则两块矩形绿地可合成长为(18-3x)米、宽为(6-2x)米的矩形,

根据题意得:(18-3x)(6-2x=60

整理得:x2-9x+8=0

解得:x1=1x2=8

86

x2=8舍去.

故选:B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网