题目内容
【题目】如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB和BC于点D,E,且AE平分∠BAC.
(1)求∠C的度数;
(2)若CE=1,求AB的长.
【答案】(1);(2).
【解析】
(1)先由线段垂直平分线的性质及∠B=30°求出∠BAE=30°,再由AE平分∠BAC可得出∠EAC=∠BAE=30°,由三角形内角和定理即可求出∠C的度数.
(2)先求出∠EAC=30°,在Rt△AEC中,利用特殊角的三角函数求解直角三角形,可解得AC的长为,再在Rt△ABC中,利用特殊角的三角函数求解直角三角形,可解得AB 的长.
(1)∵DE是线段AB的垂直平分线,∠B=30°,
∴∠BAE=∠B=30°,
∵AE平分∠BAC,
∴∠EAC=∠BAE=30°,
即∠BAC=60°,
∴∠C=180°﹣∠BAC﹣∠B=180°﹣60°﹣30°=90°.
(2)∵∠C=90°,∠B=30°,
∴∠BAC=60°
∵AE平分∠BAC
∴∠EAC=30°
∵CE=1,∠C=90°
∴AC==,
∴AB==2.
练习册系列答案
相关题目