题目内容
【题目】(本题满分10分)
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求的度数.
(2)如图②,在Rt△ABD中,,,点M,N是BD边上的任意两点,且,将△ABM绕点A逆时针旋转至△ADH位置,连接,试判断MN,ND,DH之间的数量关系,并说明理由.
(3)在图①中,连接BD分别交AE,AF于点M,N,若,,,求AG,MN的长.
【答案】(1)在Rt△ABE和Rt△AGE中,,,
∴△ABE≌△AGE. ∴.············································1分
同理,.
∴.·····························································2分
(2).··························································3分
∵,,
∴. ∴.
又∵,,
∴△AMN≌△AHN. ∴.············································5分
∵,,
∴. ∴.
∴. ∴.·····················································6分
(3)由(1)知,,.
设,则,.
∵,
∴.
解这个方程,得,(舍去负根).
∴.·····························································8分
∴.
在(2)中,,,
∴.·····························································9分
设,则.
∴.即.·························································10分
【解析】略
【题目】某工厂以每千克200元的价格购进甲种原料360千克,用于生产A、B两种产品,生产1件A产品或1件B产品所需甲、乙两种原料的千克数如下表:
产品/原料 | A | B |
甲(千克) | 9 | 4 |
乙(千克) | 3 | 10 |
乙种原料的价格为每千克300元,A产品每件售价3000元,B产品每件售价4200元,现将甲种原料全部用完,设生产A产品x件,B产品m件,公司获得的总利润为y元.
(1)写出m与x的关系式;
(2)求y与x的关系式;
(3)若使用乙种原料不超过510千克,生产A种产品多少件时,公司获利最大?最大利润为多少?