题目内容

已知关于x的方程kx2-4x-2=0有两个实数根.
(1)求k的取值范围;
(2)若方程的两个实数根为x1,x2,且x12+x22=4,求k的值.
分析:(1)根据判别式在大于等于0时,方程总有两个实数根,确定m的取值范围.
(2)根据根与系数的关系可以求出m的值.
解答:解:(1)∵△≥0时,一元二次方程总有两个实数根,
△=(-4)2-4×k×(-2)=16+8k≥0,
k≥-2,
所以k≥-2且k≠0时,方程总有两个实数根.
(2)∵方程的两个实数根为x1,x2,且x12+x22=4,
∴(x1+x22-2x1x2=78,
∵x1+x2=-
b
a
,x1•x2=
c
a

∴(
4
k
2-2×
-2
k
=4,
k2-k-4=0
解得k=
17
2

故k的值是
1+
17
2
1-
17
2
点评:此题主要考查了根的判别式和根与系数的关系,要记住x1+x2=-
b
a
,x1•x2=
c
a
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网