题目内容
【题目】为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:
请根据以图表信息,解答下列问题:
(1)表中m= ,n= ;
(2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.
【答案】(1)120,0.2;(2)作图见解析;(3)落在80≤x<90这一组;(4)0.55.
【解析】
试题分析:(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;
(2)根据(1)中的m的值,可以将补全频数分布直方图;
(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;
(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.
试题解析:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为:120,0.2;
(2)补全的频数分布直方图如右图所示;
(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;
(4)由题意可得:=0.55,即这名选手恰好是获奖者的概率是0.55.
【题目】我市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出如图所示的频数分布表和频数分布直方图的一部分.
时间/时 | 频数 | 百分比 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合计 | 1 |
(1)求表中a,b的值;
(2)补全频数分布直方图;
(3)请你估算该校1400名初中学生中,约有多少名学生在1.5小时以内完成了家庭作业.