题目内容
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①ac>0;②b<0;③b2-4ac>0;④9a+3b+c<0.其中,正确结论的是________.(只填序号)
②③④
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:①∵该抛物线的开口方向向上,
∴a>0;
∵该抛物线与y轴交于负半轴,
∴c<0,
∴ac<0;
故本选项错误;
②根据图象知,对称轴x=-=1,
∴b=-2a<0,即b<0;
故本选项正确;
③由图象可知,该抛物线与x轴有两个不同的交点,
∴b2-4ac>0;故本选项正确;
④根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故本选项正确;
综上所述,正确的说法是:②③④.
故答案是:②③④.
点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:①∵该抛物线的开口方向向上,
∴a>0;
∵该抛物线与y轴交于负半轴,
∴c<0,
∴ac<0;
故本选项错误;
②根据图象知,对称轴x=-=1,
∴b=-2a<0,即b<0;
故本选项正确;
③由图象可知,该抛物线与x轴有两个不同的交点,
∴b2-4ac>0;故本选项正确;
④根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故本选项正确;
综上所述,正确的说法是:②③④.
故答案是:②③④.
点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x | -0.1 | -0.2 | -0.3 | -0.4 |
y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |