题目内容
【题目】如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为( )
A.(-1,0)B.(,0)C.(,0)D.(1,0)
【答案】B
【解析】
由题意作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.
解:作A关于x轴对称点C,连接BC并延长交x轴于点P,
∵A(1,-1),
∴C的坐标为(1, 1),
连接BC,设直线BC的解析式为:y=kx+b,
∴,解得,
∴直线BC的解析式为:y=2x-1,
当y=0时,x=,
∴点P的坐标为:(,0),
∵当B,C,P不共线时,根据三角形三边的关系可得:|PA-PB|=|PC-PB|<BC,
∴此时|PA-PB|=|PC-PB|=BC取得最大值.
故选:B.
练习册系列答案
相关题目
【题目】二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣1 | ﹣ | ﹣2 | ﹣ | … |
根据表格中的信息,完成下列各题:
(1)当x=3时,y=________;
(2)当x=_____时,y有最________值为________;
(3)若点A(x1,y1)、B(x2,y2)是该二次函数图象上的两点,且﹣1<x1<0,1<x2<2,试比较两函数值的大小:y1________y2 ;
(4)若自变量x的取值范围是0≤x≤5,则函数值y的取值范围是________.