题目内容

【题目】如图,在中,,以AB为直径的BD于点C,交AD于点E于点G,连接FEFC

求证:GC的切线;

填空:

,则的面积为______

的度数为______时,四边形EFCD是菱形.

【答案】

【解析】

(1)由等腰三角形的性质得出∠D=∠BCF,证出CF∥AD,由已知条件得出CG⊥CF,即可得出结论;

(2)解:①连接AC,BE,根据圆周角定理得到AC⊥BD,∠AEB=90°,根据等腰三角形的性质得到BC=CD,解直角三角形得到DE=2-2,根据三角形的中位线的性质得到DG=EG=DE=-1,CG=BE=1,于是得到结论;

②证出△BCF是等边三角形,得出∠B=60°,CF=BF=AB,证出△ABD是等边三角形,CF=AD,证出△AEF是等边三角形,得出AE=AF=AB=AD,因此CF=DE,证出四边形EFCD是平行四边形,即可得出结论.

证明:

的切线;

解:连接ACBE

的直径,

的面积

故答案为:

的度数为时,四边形EFCD是菱形理由如下:

是等边三角形,

是等边三角形,

是等边三角形,

四边形EFCD是平行四边形,

四边形EFCD是菱形;

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网