题目内容
21、阅读下面的例题:
解方程:x2+|x|-2=0.
解:原方程可化为:|x|2+|x|-2=0即:(|x|+2)(|x|-1)=0.
∵|x|+2>0∴|x|-1=0∴x1=1,x2=-1
∴原方程的根是x1=1,x2=-1
请参照例题解方程:x2-6x-|x-3|+3=0.
解方程:x2+|x|-2=0.
解:原方程可化为:|x|2+|x|-2=0即:(|x|+2)(|x|-1)=0.
∵|x|+2>0∴|x|-1=0∴x1=1,x2=-1
∴原方程的根是x1=1,x2=-1
请参照例题解方程:x2-6x-|x-3|+3=0.
分析:当绝对值内的数不小于0时,可直接去掉绝对值,而当绝对值内的数为负数时,去绝对值时,绝对值内的数要变为原来的相反数.本题要求参照例题解题,要先对x的值进行讨论,再去除绝对值将原式化简.
解答:解:当x≥3时,原方程化为x2-6x-(x-3)-3=0,
即x2-7x=0
解得x1=0(不合题意,舍去),x2=7;
当x<3时,原方程化为x2-6x+x-3-3=0
即x2+5x-6=0,
解得x1=1,x2=-6.
所以原方程的根是x1=7,x2=1,x3=-6.
即x2-7x=0
解得x1=0(不合题意,舍去),x2=7;
当x<3时,原方程化为x2-6x+x-3-3=0
即x2+5x-6=0,
解得x1=1,x2=-6.
所以原方程的根是x1=7,x2=1,x3=-6.
点评:此题考查了绝对值的性质和一元二次方程的解法,另外去绝对值时要注意符号的改变.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
练习册系列答案
相关题目