题目内容
【题目】如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.
(1)求证:AE=EF.
(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点 ”其余条件不变,那么结论AE=EF是否成立呢?若成立,请你证明这一结论,若不成立,请你说明理由.
【答案】(1)证明见解析;(2)成立,证明见解析
【解析】试题分析:(1)取AB的中点G,连接EG,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF.
(2)在AB上取一点M,使AM=EC,连接ME,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF.
试题解析:
(1)证明:取AB的中点G,连接EG
∵四边形ABCD是正方形∴AB=BC,∠B=∠BCD=∠DCG=90°
∵点E是边BC的中点
∴AM=EC=BE
∴∠BGE=∠BEG=45°
∴∠AGE=135°,
∵CF平分∠DCG,
∴∠DCF=∠FCG=45°,
∴∠ECF=180°-∠FCG=135°,
∴∠AGE=∠ECF
∵∠AEF=90°
∴∠AEB+∠CEF=90°,
又∵∠AEB+∠GAE=90°,
∴∠GAE=∠CEF,
在△AGE和△ECF中,∠GAE=∠CEF,AG=CE,∠AGE=∠ECF∴△AGE≌△ECF(ASA),∴AE=EF
(2)证明:在AB上取一点M,使AM=EC,连结ME,
∴BM=BE∴∠BME=45°∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF = 45°.
∴∠ECF = 135°.
∴∠AME = ∠ECF .
∵∠AEB +∠BAE=90°,∠AEB + ∠CEF = 90°,
∴∠BAE = ∠CEF.
∴△AME ≌ △ECF(ASA).
∴AE=EF.