题目内容
【题目】如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为________(用含a的式子表示).
【答案】a+4
【解析】∵抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,
∴OB=4.
由抛物线的对称性知AB=AO,
∴四边形AOBC的周长为AO+AC+BC+OB=△ABC的周长+OB=a+4.
故答案为a+4.
点睛: 本题考查了二次函数的性质.此题利用了抛物线的对称性,解题的技巧性在于把求四边形AOBC的周长转化为求(△ABC的周长+OB)是值.
练习册系列答案
相关题目