题目内容
【题目】如图,中,平分交于点,在上截取,过点作交于点.求证:四边形是菱形;
如图,中,平分的外角交的延长线于点,在的延长线上截取,过点作交的延长线于点.四边形还是菱形吗?如果是,请证明;如果不是,请说明理由.
【答案】(1)证明见解析;(2)四边形是菱形.理由见解析.
【解析】
(1)直接由SAS得出△ADE≌△ADC,进而得出DE=DC,∠ADE=∠ADC.再由SAS证明△AFE≌△AFC,得出EF=CF.由EF∥BC得出∠EFD=∠ADC,从而∠EFD=∠ADE,根据等角对等边得出DE=EF,从而DE=EF=CF=DC,由菱形的判定可知四边形CDEF是菱形.
(2)首先由SAS证出△ADE≌△ADC,△AFE≌△AFC,得出DE=DC,∠ADE=∠ADC,EF=CF.然后由EF∥BC,得出∠EFD=∠ADC,从而∠EFD=∠ADE,根据等边对等角得出DE=EF,则DE=EF=CF=DC,由菱形的判定可知四边形CDEF是菱形.
证明:在和中,
∵
∴;
∴,
同理,
∴
∵
∴,
∴,
∴,
∴,
∴四边形是菱形.
解:四边形是菱形.理由如下:
在和中,
∵
∴,
∴,.
同理,
∴.
∵,
∴,
∴,
∴,
∴,
∴四边形是菱形.
练习册系列答案
相关题目