题目内容
【题目】如图,AD是等腰三角形ABC的底边BC上的高,DE∥AB,交AC于点E,试找出图中的一个等腰三角形(△ABC除外),并说明理由.我找的等腰三角形是 理由:
【答案】△EDC与△AED.
【解析】
试题分析:由AD是等腰三角形ABC的底边BC上的高,DE∥AB,易得△EDC是等腰三角形,又由AD⊥BC,易得△AED是等腰三角形.
解:△EDC与△AED.
理由:∵△ABC是等腰三角形,AB=AC,
∴∠B=∠C,
∵DE∥AB,
∴∠EDC=∠B,
∴∠EDC=∠C,
∴ED=EC,
即△EDC是等腰三角形;
∵AD⊥BC,
∴∠EDC+∠ADE=90°,∠C+∠CAD=90°,
∴∠ADE=∠CAD,
∴AE=ED,
∴△AED是等腰三角形.
故答案为:△EDC与△AED.
练习册系列答案
相关题目