题目内容
【题目】如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,AF⊥BC,垂足为D.
(1)求证:∠BAE=∠CAD.
(2)若⊙O的半径为4,AC=5,CD=2,求CF.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)由圆周角定理得出∠ABE=90°,得出∠BAE+∠BEA=90°,由AF⊥BC得出∠ACD+∠CAD=90°,由圆周角定理得出∠BEA=∠ACD,即可得出结论;(2)证明△ABE∽△ADC,得出对应边成比例,求出BE,由圆周角定理,得出CF=BE=即可.
试题解析:(1)证明:∵AE是O的直径,
∴∠ABE=90°,
∴∠BAE+∠BEA=90°,
∵AF⊥BC,
∴∠ADC=90°,
∴∠ACD+∠CAD=90°,
又∵∠BEA=∠ACD,
∴∠BAE=∠CAD;
(2)∵∠ABE=∠ADC=90°,∠BEA=∠ACD,
∴△ABE∽△ADC,
∴,即,
解得:BE=,
由(1)得:∠BAE=∠CAD,
∴,
∴CF=BE=.
练习册系列答案
相关题目
【题目】八年级一班与二班的同学在一次数学测验中的成绩统计情况如下表:
班级 | 参加人数 | 中位数 | 平均数 | 方差 |
一 | 49 | 84 | 80 | 186 |
二 | 49 | 85 | 80 | 161 |
某同学分析后得到如下结论:
①一班与二班学生平均成绩相同;
②二班优生人数多于一班(优生线85分)
③一班学生的成绩相对稳定。其中正确的是( )
A. ①② B. ①③ C. ①②③ D. ②③