题目内容
【题目】如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
(1)求证:直线AB是⊙O的切线;
(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE的值.
【答案】(1)见解析;(2)
【解析】
(1)根据等腰三角形性质得出OC⊥AB,根据切线的判定得出即可;
(2)连接OC、DC,证△ADC∽△ACF,求出AF=4x,CF=2DC,根据勾股定理求出DC=x,DF=3x,解直角三角形求出sin∠AFC,即可求出答案.
(1)证明:连接OC,如图1,
∵OA=OB,AC=BC,
∴OC⊥AB,
∵OC过O,
∴直线AB是⊙O的切线;
(2)解:连接OC、DC,如图2,
∵AB=4AD,
∴设AD=x,则AB=4x,AC=BC=2x,
∵DF为直径,
∴∠DCF=90°,
∵OC⊥AB,
∴∠ACO=∠DCF=90°,
∴∠OCF=∠ACD=90°﹣∠DCO,
∵OF=OC,
∴∠AFC=∠OCF,
∴∠ACD=∠AFC,
∵∠A=∠A,
∴△ADC∽△ACF,
∴,
∴AF=2AC=4x,FC=2DC,
∵AD=x,
∴DF=4x﹣x=3x,
在Rt△DCF中,(3x)2=DC2+(2DC)2,
解得:DC=x,
∵OA=OB,AC=BC,
∴∠AOC=∠BOC,
∴,
∴∠CFE=∠AFC,
∴sin∠CFE=sin∠AFC==.
练习册系列答案
相关题目