题目内容
【题目】(列方程计算)某数的5倍减去4,比该数大4,求这个数.
【答案】这个数是2.
【解析】设这个数是x,由题意列出方程即可解答.
解:5x-4=x+4,x=2.
答:这个数是2.
【题目】下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( )A.正三角形B.正方形C.正五边形D.正六边形
【题目】某店出售甲、乙、丙三种不同型号的电动车,已知甲型车的第一季度销售额占这三种车总销售额的56%,第二季度乙、丙两种型号车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%,则a的值为 .
【题目】如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.
【题目】在数-5,1,-3,5,-2中任选两个数相乘,其中最大的积是________
【题目】如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式. 比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2
(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使它的边长分别为(2a+b)、(a+2b),不画图形,试通过计算说明需要C类卡片多少张;
(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使它的面积等于a2+5ab+4b2,画出这个长方形,并根据图形对多项式a2+5ab+4b2进行因式分解;
(3) 如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案并判断,将正确关系式的序号填写在横线上______ _____(填写序号)
①.xy = ②.x+y=m ③.x2-y2=m·n ④.x2+y2 =
【题目】已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是( )A.相切B.相离C.相离或相切D.相切或相交
【题目】阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。如对于任意正实数、x,可作变形:x+=(-)2+2,因为(-)2≥0,所以x+≥2(当x=时取等号).
记函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.
直接应用: 已知函数y1=x(x>0)与函数y2 = (x>0),则当x= 时,y1+y2取得最小值为 .
变形应用: 已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求 的最小值,并指出取得该最小值时相应的x的值.
实际应用:汽车的经济时速是指汽车最省油的行驶速度。某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升。若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
①、求y关于x的函数关系式(写出自变量x的取值范围);
②、求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).
【题目】已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( )
A. 11 B. 5 C. 2 D. 1