题目内容

如图,抛物线y=-x2+mx过点A(4,0),O为坐标原点,Q是抛物线的顶点.
(1)求m的值和顶点Q的坐标;
(2)设点P是x轴上方抛物线上的一个动点,过点P作PH⊥x轴,H为垂足,求折线P-H-O长度的最大值.
(1)把点A(4,0)抛物线y=-x2+mx
得,-16+4m=0,
解得m=4,
故此抛物线的解析式为y=-x2+4x.(3分)
Q点坐标为x=-
b
2a
=-
4
2×(-1)
=2,y=
4ac-b2
4a
=
-42
4×(-1)
=4.(6分)

(2)设点P(x,-x2+4x),
则折线P-H-O的长度:l=-x2+5x=-(x-
5
2
2+
25
4

∴折线P-H-O的长度的最大值为
25
4
.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网