题目内容

如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,
求证:BC=3AD.

证明:在△ABC中,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
又∵AD⊥AC,
∴∠DAC=90°,
∵∠C=30°
∴CD=2AD,∠BAD=∠B=30°,
∴AD=DB,
∴BC=CD+BD=AD+DC=AD+2AD=3AD.
分析:已知∠BAC=120°,AB=AC,∠B=∠C=30°,可得AD⊥AC,有CD=2AD,AD=BD.即可得证.
点评:本题考查了直角三角形的有关知识和等腰三角形的性质定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网