题目内容
如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠B的度数是( )
A.500 | B.400 | C.450 | D.600 |
D
已知△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,可得△COD≌△AOB,旋转角为40°,∵点C恰好在AB上,∴△AOC为等腰三角形,可结合三角形的内角和定理求∠B的度数.
解:根据旋转性质得△COD≌△AOB,
∴CO=AO,
由旋转角为40°,
可得∠AOC=∠BOD=40°,
∴∠OAC=(180°-∠AOC)÷2=70°,
∠BOC=∠AOD-∠AOC-∠BOD=10°,
∠AOB=∠AOC+∠BOC=50°,
在△AOB中,由内角和定理得∠B=180°-∠OAC-∠AOB=180°-70°-50°=60°.
故答案选D.
解:根据旋转性质得△COD≌△AOB,
∴CO=AO,
由旋转角为40°,
可得∠AOC=∠BOD=40°,
∴∠OAC=(180°-∠AOC)÷2=70°,
∠BOC=∠AOD-∠AOC-∠BOD=10°,
∠AOB=∠AOC+∠BOC=50°,
在△AOB中,由内角和定理得∠B=180°-∠OAC-∠AOB=180°-70°-50°=60°.
故答案选D.
练习册系列答案
相关题目