题目内容

【题目】下列说法正确的是(  )

A. 整数包括正整数和负整数

B. 分数包括正分数和负分数

C. 正有理数和负有理数组成有理数集合

D. 0既是正整数也是负整数

【答案】B

【解析】

根据有理数的分类结合相关概念进行判断即可整数包括正整数、负整数和0分数包括正分数和负分数有理数包括正有理数、负有理数和00不是正数也不是负数

整数包括正整数、负整数和0所以A错误

分数包括正分数和负分数所以B正确

有理数包括正有理数、负有理数和0所以C错误

 0不是正数也不是负数所以D错误

故选B

练习册系列答案
相关题目

【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表中)

2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三

角形?(只需把结果填在表中)


7

8

9

10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表中)











问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网