题目内容
【题目】如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点l,过点A作⊙O的切线AF,与DE相交于点F.
(1)求证:∠DAF=∠ABO;
(2)当AB=AD时,求证:BC=2AF;
(3)如图2,在(2)的条件下,延长FA,BC相交于点G,若tan∠DAF=,EH=2,求线段CG的长.
【答案】(1)证明见解析(2)证明见解析(3)
【解析】
试题分析:(1)连接AO,如图1,由OA=OB可得∠OAB=∠OBA,要证∠DAF=∠ABO,只需证∠DAF=∠BAO,只需证∠FAO=∠DAB=90°即可;
(2)由于BC=2OA,要证BC=2AF,只需证OA=AF,只需证△AFD≌△AOB即可;
(3)过点A作AN⊥BC于N,连接OH,OA,如图2,易得BE=2IE,DE=2EC,DI=2AF=BC,从而可得EC=3IE=BE.设BE=2x,则有EC=3x,BC=5x,HO=BO=,EO=.在Rt△HEO中运用勾股定理可求出x.利用三角函数可得BN=2AN=4NC,则有BC=5NC=10,从而可求出NC、ON,易证△AON∽△GOA,根据相似三角形的性质可求出OG,从而可求出CG.
试题解析:(1)连接AO,如图1.
∵AF与⊙O相切于点A,
∴OA⊥AF,即∠FAO=90°.
∵BC是⊙O的直径,
∴∠BAC=90°,
∴∠DAB=90°,
∴∠FAO=∠DAB=90°,
∴∠DAF=∠BAO.
∵OA=OB,
∴∠OAB=∠OBA,
∴∠DAF=∠ABO;
(2)∵DE⊥BC,∴∠DEB=90°,
∴∠DIB=90°+∠ABO.
∵∠DIB=90°+∠D,
∴∠D=∠ABO.
在△AFD和△AOB中,
,
∴△AFD≌△AOB,
∴AF=AO,
∴BC=2OA=2AF;
(3)过点A作AN⊥BC于N,连接OH,OA,如图2.
∵∠D=∠B=∠BAO=∠DAF,tan∠DAF=,
∴tanB=,tanD=,
∴BE=2IE,DE=2EC.
又∵∠DIA+∠D=∠DAF+∠FAI=90°,
∴∠FIA=∠FAI,
∴FI=FA,
∴DI=2AF=BC,
∴DE﹣IE=BE+EC,
∴2EC﹣IE=2IE+EC,
∴EC=3IE=BE.
设BE=2x,则有EC=3x,BC=5x,HO=BO=,EO=.
在Rt△HEO中,根据勾股定理可得
()2+(2)2=()2,
解得x=2(舍负).
∵AN⊥BC,∠BAC=90°,
∴∠NAC=∠ABC,
∴tan∠NAC=,tan∠ABC=,
∴BN=2AN=4NC,
∴BC=5NC=10,
∴NC=2,ON=5﹣2=3.
∵∠AON=∠GOA,∠ANO=∠OAG=90°,
∴△AON∽△GOA,
∴,
∴,
∴OG=,
∴CG=OG﹣OC=.