题目内容
【题目】如图1,在四边形ABCD内接于⊙O,AB=AC,BD为⊙O的直径,AE⊥BD,垂足为点E,交BC于点F.
(1)求证:FA=FB;
(2)如图2,分别延长AD,BC交于点G,点H为FG的中点,连接DH,若tan∠ACB=,求证:DH为⊙O的切线;
(3)在(2)的条件下,若DA=3,求AE的长.
【答案】(1)见解析;(2)见解析;(3)AE=2.
【解析】
(1)易得∠BAD=90°,∠AED=90°,根据余角的性质得∠BAE=∠ADE,结合等腰三角形的性质和圆周角定理,即可得到结论;
(2)由正切函数的定义得AB=AD, AG=AB,从而得AG=2AD,即点D为AG的中点,进而得DH∥AF,结合∠AED=90°,即可得到结论;
(3)根据正切三角函数的定义和勾股定理得AB=6,BD=3,结合三角形的面积公式,即可得到答案.
(1)∵BD为⊙O的直径,
∴∠BAD=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BD,
∴∠AED=90°,
∴∠DAE+∠ADE=90°,
∴∠BAE=∠ADE,
∵AB=AC,
∴∠ABC=∠ACB,
又∵∠ACB=∠ADE,
∴∠ABC=∠ADE=∠BAE,
∴FA=FB;
(2)由(1)知,∠ABC=∠ACB=∠ADB,
∵tan∠ACB=,
∴tan∠ABC=tan∠ADB=,
又∵∠BAD=90°,
∴在Rt△BAD中,AB=AD,在Rt△BAG中,AG=AB,
∴AG=(AD)=2AD,
∴点D为AG的中点,
又∵点H为FG的中点,
∴DH∥AF,
由(1)知,∠AED=90°,
∴∠HDE=∠AED=90°,
∴DH⊥OD,
∴DH为⊙O的切线;
(3)∵AD=3,
∴AB=AD=6,
∴在Rt△ABD中,BD= =3,
∵S△ABD=ABAD=BDAE,
∴6×3=3×AE,
∴AE=2.
【题目】我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.
x(厘米) | 1 | 2 | 4 | 7 | 11 | 12 |
y(斤) | 0.75 | 1.00 | 1.50 | 2.75 | 3.25 | 3.50 |
(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?
(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?