题目内容
【题目】如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上一点,∠EAB=∠ADB.
(1)求证:EA是⊙O的切线;
(2)已知点B是EF的中点,AF=4,CF=2,求AE的长.
【答案】(1)证明见解析(2)4
【解析】试题分析:(1)连接CD,由AC是⊙O的直径,可得出∠ADC=90°,由角的关系可得出∠EAC=90°,即得出EA是⊙O的切线,
(2)连接BC,由AC是⊙O的直径,可得出∠ABC=90°,由在Rt△EAF中,B是EF的中点,可得出∠BAC=∠AFE,即可得出△EAF∽△CBA,可得出,由比例式可求出AB,由勾股定理得出AE的长.
试题解析:(1)证明:如图,连接CD,
∵AC是⊙O的直径,
∴∠ADC=90°.
∴∠ADB+∠EDC =90°
∵∠BAC=∠EDC, ∠EAB =∠ADB,
∴∠EAC=∠EAB+∠BAC=90°,
∴EA是⊙O的切线;
(2)如图,连接BC
∵AC是⊙O的直径,
∴∠ABC=90°.
∴∠CBA=∠ABC =90°.
∵B是EF的中点,
∴在Rt△EAF中,AB=BF.
∴∠BAC=∠AFE
∴△EAF∽△CBA.
∴,
∵AF=4,CF=2,
∴AC=6,EF=2AB.
∴,解得AB=,
∴EF=.
∴AE= .
练习册系列答案
相关题目