题目内容

(2013•南通一模)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线与点E,连接AE.
(1)求证:AE与⊙O相切;
(2)连接BD并延长交AE于点F,若EC∥AB,OA=6,求AF的长.
分析:(1)连接OC,由CE为圆O的切线,利用切线的性质得到∠OCE=90°,再由OA=OC,OD垂直于AC,利用三线合一得到一对角相等,利用SAS得到三角形COE与三角形AOE全等,由全等三角形的对应角相等得到∠OAE=∠OCE=90°,利用垂直的定义得到AE与AO垂直,即可得证;
(2)设BF与OC交于点G,由EC与AB平行,利用两直线平行同旁内角互补,及三个角为直角的四边形为矩形得到四边形AECO为矩形,再由OA=OC,得到四边形AECO为正方形,可得出OG平行于AE,AE=AO=6,OD=ED,由OG与AF平行,利用平行线得比例得到OG=EF,再由OG与AF平行,得到比例式,得到AF=2OG=2EF,即可求出AF的长.
解答:(1)证明:连接OC,
∵CE是⊙O的切线,
∴∠OCE=90°,
∵OA=OC,OD⊥AC,
∴∠COE=∠AOE,
∵在△COE和△AOE中,
OA=OC
∠COE=∠AOE
OE=OE

∴△COE≌△AOE(SAS),
∴∠OAE=∠OCE=90°,
∴OA⊥AE,
∴AE与⊙O相切;

(2)解:设BF与OC相交于点G,
∵EC∥AB,
∴∠AEC=∠OAE=90°,
∵∠AEC=∠OAE=∠OCE=90°,
∴四边形OAEC是矩形,
∵OA=OC,
∴矩形OAEC是正方形,
∴OG∥AE,AE=AO=6,OD=ED,
∵OG∥AE,
OG
EF
=
OD
ED
=1,
∴OG=EF,
∵OG∥AE,
OG
AF
=
OB
AB
=
1
2

EF
AF
=
1
2

∴AF=
2
3
AE=
2
3
×6=4.
点评:此题考查了切线的判定与性质,全等三角形的判定与性质,正方形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网