题目内容
【题目】如图,一楼房AB后有一假山,其斜坡CD坡比为1: ,山坡坡面上点E处有一休息亭,测得假山坡脚C与楼房水平距离BC=6米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.
(1)求点E距水平面BC的高度;
(2)求楼房AB的高.(结果精确到0.1米,参考数据 ≈1.414, ≈1.732)
【答案】
(1)
解:过点E作EF⊥BC于点F.
在Rt△CEF中,CE=20, ,
∴EF2+( EF)2=202,
∵EF>0,
∴EF=10.
答:点E距水平面BC的高度为10米.
(2)
解:过点E作EH⊥AB于点H.
则HE=BF,BH=EF.
在Rt△AHE中,∠HAE=45°,
∴AH=HE,
由(1)得CF= EF=10 (米)
又∵BC=6米,
∴HE=6+10 米,
∴AB=AH+BH=6+10 +10=16+10 ≈33.3(米).
答:楼房AB的高约是33.3米.
【解析】(1)过点E作EF⊥BC于点F.在Rt△CEF中,求出CF= EF,然后根据勾股定理解答;(2)过点E作EH⊥AB于点H.在Rt△AHE中,∠HAE=45°,结合(1)中结论得到CF的值,再根据AB=AH+BH,求出AB的值.
练习册系列答案
相关题目