题目内容

如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是( )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为2时,菱形ABCD的边长为2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤
【答案】分析:(1)连接AC,根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM的值最小;
(2)由题意得MB=NB,∠ABN=30°,所以∠EBN=30°,容易证出△AMB≌△ENB;
(3)连接AC,可以得到S△ABE=S△ADC,S△AMB≠S△AMC,从而可以得出结论.
(4)假设AN⊥BE,根据等腰三角形的性质及垂直平分线的性质得出EN=BN,从而得出结论.
(5)根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长,(如图)作辅助线,过E点作EF⊥BC交CB的延长线于F,由题意求出∠EBF=60°,设菱形的边长为x,在Rt△EFC中,根据勾股定理求得菱形的边长.
解答:解:①连接AC,交BD于点O,
∵四边形ABCD是菱形,
∴AB=BC,BD⊥AC,AO=BO
∴点A,点C关于直线BD对称,
∴M点与O点重合时AM+CM的值最小为AC的值
∵∠ABC=60,
∴△ABC是等边三角形,
∴AB=AC,
∵AB=1,
∴AC=1,
即AM+CM的值最小为1,故本答案正确.
②∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠MBA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS),故本答案正确.
③∵S△ABE+S△ABM=S四边形AMBE
S△ACD+S△AMC=S四边形ADCM,且S△AMB≠S△AMC
∴S△ABE+S△ABM≠S△ACD+S△AMC
∴S四边形AMBE≠S四边形ADCM,故本答案错误.
④假设AN⊥BE,且AE=AB,
∴AN是BE的垂直平分线,
∴EN=BN=BM=MN,
∴M点与O点重合,
∵条件没有确定M点与O点重合,故本答案错误.
⑤如图,连接MN,由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.(10分)
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.
过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=180°-120°=60°,设菱形的边长为x,
∴BF=x,EF=x,在Rt△EFC中,
∵EF2+FC2=EC2
+=,解得x=2,故本答案正确.
综上所述,正确的答案是:①②⑤,
故选C.

点评:本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质,轴对称最短路线问题和旋转的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网