题目内容

以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),则折痕EF的长为       
过E作EG⊥OC,根据点B的坐标可求出OA=BC=3,OC=AB=9,设OF=x,在Rt△AOF中利用勾股定理可求出OF的长,进而可求出CF的长,同理在Rt△AEB′中利用勾股定理可求出AE的长,进而可求出BE的长,由CF-BE可得出FG的长,在Rt△EFG中利用勾股定理即可求出EF的长.
解:过E作EG⊥OC,

∵点B的坐标为(9,3),
∴OA=BC=3,OC=AB=9,设OF=x,则AF=9-x,
在Rt△AOF中,AF2=OA2+OF2,即(9-x)2=32+x2,解得x=4,
∴CF=9-4=5,
同理,设B′E=x,则AE=9-x,在Rt△AEB′中,
AE2=AB′2+B′E2,即(9-x)2=32+x2,解得x=x,即BE=4,
∴GF=CF-BE=5-4=1,
在Rt△EFG中,EF2=EG2+FG2,即EF2=32+12,EF=
故答案为:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网