题目内容
由绝对值的性质、负指数幂的性质、零指数幂的性质以及特殊角的三角函数值,即可将原式化简为++×1-,继而求得答案;
(1)原式=++×1-=1;
解分式方程:+=1。
已知:是一元二次方程的两个实数根.求:的值.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:分别根据负整数指数幂、0指数幂、绝对值的性质及二次根式的化简计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2-1-3+2, =0.故答案为:0.点评:本题考查的是实数的运算,熟知负整数指数幂、0指数幂、绝对值的性质及二次根式的化简是解答此题的关键.答题:ZJX老师
观察可得最简公分母是(x+1)(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【解答】
(2)方程的两边同乘(x+1)(x-1),得
2(x-1)+4=x2-1,
即x2-2x-3=0,
(x-3)(x+1)=0,
解得x1=3,x2=-1,
检验:把x=3代入(x+1)(x-1)=8≠0,即x=3是原分式方程的解,
把x=-1代入(x+1)(x-1)=0,即x=-1不是原分式方程的解,
则原方程的解为:x=3.
【点评】此题考查了实数的混合运算与分式方程的解法.此题难度不大,但注意掌握绝对值的性质、负指数幂的性质、零指数幂的性质以及特殊角的三角函数值,注意解分式方程一定要验根.
20.(本题满分5分)如图,已知△ABC,且∠ACB=90°。
(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明);
①以点A为圆心,BC边的长为半径作⊙A;
②以点B为顶点,在AB边的下方作∠ABD=∠BAC.
(2)请判断直线BD与⊙A的位置关系(不必证明).