题目内容
【题目】如图1,将两个完全相同的三角形纸片ABC和A′B′C重合放置,其中∠C=90°,∠B=∠B′=30°,AC=AC′=2.
(1)如图2,固定△ABC,将△A′B′C绕点C旋转,当点A′恰好落在AB边上时,
①∠CA′B′=;旋转角ɑ=(0°<ɑ<90°),线段A′B′与AC的位置关系是;
(2)②设△A′BC的面积为S1 , △AB′C的面积为S2 , 则S1与S2的数量关系是什么?证明你的结论;
(3)如图3,∠MON=60°,OP平分∠MON,OP=PN=4,PQ∥MO交ON于点Q.若在射线OM上存在点F,使S△PNF=S△OPQ , 请直接写出相应的OF的长.
【答案】
(1)60°;60°;平行
(2)
解:S1=S2.理由如下:
∵A′B′∥AC,
∴A′E⊥BC,
在Rt△CA′E中,A′E= CA′=1,CE= A′E= ,
∴S1= 12 = ,
S2= 2 = ,
∴S1=S2
(3)
如图3,作PF1∥ON交OM于F1,作PF2⊥OP交OM于F2,
∵∠MON=60°,OP平分∠MON,
∴∠POQ=∠POF1=30°,
∵PQ∥OM,PF1∥OQ,
∴四边形OQPF1为平行四边形,
∴PF1=OQ,
∴S△NF1P=S△POQ,
∵∠OPF2=90°,∠F2OP=30°,
∴∠OF2P=60°,
而∠F2F1P=∠MON=60°,
∴△F2F1P为等边三角形,
∴PF2=PF1,
由(1)中的结论得S△PNF2=S△OPQ,
∴点F1、点F2为满足条件的点,
在Rt△OPF2中,sin∠POF2= ,
∴OF2= = ,
∴PF2= OF2= ,
∵PF1∥OQ,
∴∠OPF1=∠POQ=30°,
∴∠OPF1=∠POF1=30°,
∴OF1=PF1=PF2,
∴OF1= ,
综上所述,OF的长为 或 .
【解析】解:(1)①如图1,∵∠C=90°,∠B=∠B′=30°,AC=AC′=2,
∴∠CAB=∠CA′B′=60°,BC=2 ,
如图2,
∵△A′B′C绕点C旋转,点A′恰好落在AB边上,
∴∠CAB=∠CA′B′=60°,CA=CA′,∠ACA′为旋转角,
∴△CAA′为等边三角形,
即旋转角为60°;
∵∠CA′B′=∠ACA′,
∴A′B′∥AC;
所以答案是60°;60°;平行;
【考点精析】利用全等三角形的性质和图形的旋转对题目进行判断即可得到答案,需要熟知全等三角形的对应边相等; 全等三角形的对应角相等;每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素.