题目内容
【题目】在正方形中,
是
上的一动点,连接
,分别过点
作
,垂足为
.
(1)求证:;
(2)如图(2),若点是
的延长线上的一个动点,请探索
三条线段之间的数量关系?并说明理由;
(3)如图(3),若点是
的延长线上的一个动点,请探索
三条线之间的数量关系?(直接写出结论,不需说明理由)
【答案】(1)BE=EF+DF;(2)DF=EF+BE;(3)EF=BE+DF.
【解析】
试题解析:(1)根据正方形的性质可知证出△ABE≌△DAF,根据全等三角形的性质:全等三角形对应边相等可得:BE=AF,AE=DF,得出BE=EF+DF;
(2)同(1)的证法相同,先证明△ABE≌△DAF,利用全等三角形的性质可得:BE=AF,BE=DF,再根据等量代换可得出图(2)中DF=EF+BE;
(3)同(1)的证法相同,可得出图(3)中EF=EB+FD.
试题解析:(1)BE=EF+DF,
证明:∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中
,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AF-AE=EF,
∴BE-DF=EF.
(2)DF=BE+EF,
证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAE+∠DAF=90°,
∵BE⊥PA、DF⊥PA,
∴∠AEB=∠DFA=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE=∠DAF,
在△ABE和△DAF中,
,
∴△ABE≌△DAF(AAS),
∴BE=AF,AE=DF,
∵AE=AF+EF,
∴DF=EB+EF.
(3)EF=BE+DF.
证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠1+∠3=90°,
∵BE⊥PA、DF⊥PA,
∴∠AEB=∠DFA=90°,
∴∠2+∠3=90°,
∴∠1=∠2,
在△ABE和△DAF中,
,
∴△ABE≌△DAF(AAS),
∴BE=AF,AE=DF(全等三角形对应边相等),
∵EF=AF+AE,
∴EF=EB+FD(等量代换).
![](http://thumb.zyjl.cn/images/loading.gif)