题目内容
如图,平面内4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是1个单位长度,正方形ABCD的4个顶点A、B、C、D都在这些平行线上,其中点A、C分别在直线l1、l4上,该正方形的面积是分析:因为A、C分别在直线l1、l4上,那么B,D也应该在直线l1、l4上,一种情况是正方形的边和平行先垂直的时候,一种是按照“弦图”画出时,分别求出边长,从而求出面积.
解答:解:(1)当正方形的边长和平行线垂直时,
正方的边长应该为3,所以正方的面积为:3×3=9.
(2)如图,将两条平行的虚线之间分为三段,使每一段长为1个单位,
由题意可知:△AEB≌△AHD≌BFC≌CGD,
所以当正方形如图放置时,正方形的边长为:
=
.
所以正方形的面积为:
×
=5.
故答案为9或5.
正方的边长应该为3,所以正方的面积为:3×3=9.
(2)如图,将两条平行的虚线之间分为三段,使每一段长为1个单位,
由题意可知:△AEB≌△AHD≌BFC≌CGD,
所以当正方形如图放置时,正方形的边长为:
22+12 |
5 |
所以正方形的面积为:
5 |
5 |
故答案为9或5.
点评:本题考查正方形的性质,正方形的边长相等,四个角都是直角,以及勾股定理的运用,关键是知道分不同的情况进行求解.
练习册系列答案
相关题目