题目内容
【题目】已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.
求:四边形ABCD的面积.
【答案】18.
【解析】试题分析:作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);DE=AB=4,BE=AD=3,EC=EB=3;在△DEC中,3、4、5为勾股数,△DEC为直角三角形,DE⊥BC;利用梯形面积公式,或利用三角形的面积可解.
试题解析:
解:作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA),
∴DE=AB=4,BE=AD=3.
∵BC=6,∴EC=EB=3.
∵DE2+CE2=32+42=25=CD2,
∴△DEC为直角三角形.
又∵EC=EB=3,
∴△DBC为等腰三角形,DB=DC=5.
在△BDA中AD2+AB2=32+42=25=BD2,
∴△BDA是直角三角形.
它们的面积分别为S△BDA=×3×4=6;S△DBC=×6×4=12.
∴S四边形ABCD=S△BDA+S△DBC=6+12=18.
练习册系列答案
相关题目