题目内容

24、如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB的延长线的H点处,且BH=4,则∠BAG=
80
度,△ABG的面积是
14

分析:根据中心对称的性质和折叠的性质计算即可,同时运用了三角形的面积公式.
解答:解:依题意有AD=AB=AG,AE=AH=AC.
又∠B=50°,则∠BAG=180°-50°×2=80°;
作AD⊥BC于D,根据三角形的面积公式得到BC=9.6.

根据等腰三角形的三线合一,
可以证明CG=BH=4,则BG=5.6.
根据三角形的面积公式得△ABG的面积是14.
点评:此题能够根据中心对称的性质和折叠的性质发现相等的线段,解题的关键是熟练运用等腰三角形的三线合一的性质进行证明HB=CG.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网