题目内容
【题目】已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为 ;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则 = .
【答案】(1) ∠E=∠END﹣∠BME (2) ∠E+2∠NPM=180°(3)
【解析】(1)根据平行线的性质和三角形外角定理即可解答.
(2)根据平行线的性质,三角形外角定理,角平分线的性质即可解答.
(3)根据平行线的性质和三角形外角定理即可解答.
(1)如图1,∵AB∥CD,
∴∠END=∠EFB,
∵∠EFB是△MEF的外角,
∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,
(2)如图2,∵AB∥CD,
∴∠CNP=∠NGB,
∵∠NPM是△GPM的外角,
∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,
∵MQ平分∠BME,PN平分∠CNE,
∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,
∵AB∥CD,
∴∠MFE=∠CNE=2∠CNP,
∵△EFM中,∠E+∠FME+∠MFE=180°,
∴∠E+2∠PMA+2∠CNP=180°,
即∠E+2(∠PMA+∠CNP)=180°,
∴∠E+2∠NPM=180°;
(3)如图3,延长AB交DE于G,延长CD交BF于H,
∵AB∥CD,
∴∠CDG=∠AGE,
∵∠ABE是△BEG的外角,
∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①
∵∠ABM=∠MBE,∠CDN=∠NDE,
∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,
∵∠CHB是△DFH的外角,
∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②
由①代入②,可得∠F=∠E,
即.