题目内容
如图,在平面直角坐标系中,直线y=-x+2分别交x轴,y轴于A,B两点,点P(1,m)在△AOB的形内(不包含边界),则m的取值范围是________.
如图,已知经过原点的直线AB与反比例函数y=kx-1(k≠0)图象分别相交于点A和点B,过点A作AC⊥x轴于点C,若△ABC的面积为4,则k的值为( )
A. 2 B. 4 C. 6 D. 8
如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个,它的三个顶点均与小正方形的顶点重合.
(1)将△ABC向左平移4个单位长度,得到△DEF(A与D,B与E,C与F对应),请在方格纸中画出△DEF;
(2)在(1)的条件下,连接AE和AF,请计算△AEF的面积S.
如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.
(1)求直线AC对应的函数表达式(用含k的式子表示).
(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.
(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.
(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.
为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.
(1)被调查的80名学生每天完成课外作业时间的中位数在_____组(填时间范围).
(2)该校九年级共有800名学生,估计大约有_____名学生每天完成课外作业时间在120分钟以上(包括120分钟)
如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是( )
A. 130° B. 120° C. 110° D. 100°
如图,在平面直角坐标系中,抛物线y=mx2﹣7mx+3与y轴交于点A,与x轴分别交于点B(1,0).点C(x2,0),过点A作直线AD∥x轴,与抛物线交于点D,在x轴上有一动点E(t,0),过点E作直线l∥y轴,与抛物线交于点P,与直线AD交于点Q.
(1)求抛物线的解析式及点C的坐标;
(2)当0<t≤7时,求△APC面积的最大值;
(3)当t>1时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为km/h,则所列方程正确的是( )
A. B.
C. D.
若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有( )
A. 3种 B. 4种 C. 5种 D. 6种