题目内容
【题目】如图,在ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.
【答案】
【解析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.
如图所示,过点A作AM⊥BC,垂足为M,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴∠B=180°-∠BAD=180°-120°=60°,
∠DAE=∠AEB,
∵AE平分∠BAD,∠BAD=120°,
∴∠DAE=60°,
∴∠AEB=60°,
∴△ABE是等边三角形,
∴BE=AB=2,
∴BM=1,AM=,
又∵CF//AE,∴四边形AECF是平行四边形,
∵CE=BC-BE=3-2=1,
∴S四边形AECF=CEAM=,
故答案为:.
练习册系列答案
相关题目