题目内容
如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )
A、12.5寸 | B、13寸 | C、25寸 | D、26寸 |
分析:根据垂径定理和勾股定理求解.
解答:解:设直径CD的长为2x,则半径OC=x,
∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,
∴AE=BE=
AB=
×10=5寸,
连接OA,则OA=x寸,根据勾股定理得x2=52+(x-1)2,
解得x=13,
CD=2x=2×13=26(寸).
故选D.
∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,
∴AE=BE=
1 |
2 |
1 |
2 |
连接OA,则OA=x寸,根据勾股定理得x2=52+(x-1)2,
解得x=13,
CD=2x=2×13=26(寸).
故选D.
点评:此题是一道古代问题,其实质是垂径定理和勾股定理.通过此题,可知我国古代的数学已发展到很高的水平.
练习册系列答案
相关题目