题目内容

观察下列计算:
1
2
+1
=
2
-1
(
2
+1)(
2
-1)
=
2
-1
1
3
+
2
=
3
-
2
(
3
+
2
)(
3
-
2
)
=
3
-
2
1
4
+
3
=
4
-
3
(
4
+
3
)(
4
-
3
)
=
4
-
3
;…
则:
(1)
1
10
+
9
=
 
1
100
+
99
=
 

(2)从计算结果找出规律:
 

(3)利用这一规律计算:
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…+
1
2006
+
2005
)(
2006
+1
)的值.
分析:将分子、分母同时乘以分母的有理化因式,使用平方差公式,分母变为1.
解答:解:(1)
1
10
+
9

=
10
-
9
(
10
+
9
)(
10
-
9
)

=
10
-
9
10-9

=
10
-
9

1
100
+
99

=
100
-
99
(
100
+
99
)(
100
-
99
)

=
100
-
99
100-99

=
100
-
99

(2)
1
n+1
+
n
=
n+1
-
n
(n是正整数)
(3)(
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…+
1
2006
+
2005
)(
2006
+1

=【(
2
-1
)+(
3
-
2
)+(
4
-
3
)
+…+(
2006
-
2005
)】(
2006
+1

=(
2
-1
+
3
-
2
+
4
-
3
+
2006
-
2005
)(
2006
+1

=(
2006
-1)(
2006
+1

=2006-1
=2005
点评:本题考查的是关于分式的分母有理化的题目.在解答此题时,关键是找出规律
1
n+1
+
n
=
n+1
-
n
(n是正整数).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网