题目内容
【题目】如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=﹣ x+b交线段OC于点B,交x轴于点A,D是射线CE上一点.若存在点D,使得△ABD恰为等腰直角三角形,则b的值为 .
【答案】 或 或2
【解析】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,
∴∠DBC=∠BAO,
由直线y=﹣ x+b交线段OC于点B,交x轴于点A可知OB=b,OA=2b,
∵点C(0,4),
∴OC=4,
∴BC=4﹣b,
在△DBC和△BAO中,
∴△DBC≌△BAO(AAS),
∴BC=OA,
即4﹣b=2b,
∴b= ;
②当∠ADB=90°时,如图2,
作AF⊥CE于F,
同理证得△BDC≌△DAF,
∴CD=AF=4,BC=DF,
∵OB=b,OA=2b,
∴BC=DF=2b﹣4,
∵BC=4﹣b,
∴2b﹣4=4﹣b,
∴b= ;
③当∠DAB=90°时,如图3,
作DF⊥OA于F,
同理证得△AOB≌△DFA,
∴OA=DF,
∴2b=4,
∴b=2;
综上,b的值为 或 或2.
所以答案是 或 或2.
【考点精析】根据题目的已知条件,利用等腰直角三角形的相关知识可以得到问题的答案,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.
练习册系列答案
相关题目