题目内容

精英家教网如图,同心圆中,大圆的弦AB交小圆于C,D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为(  )
A、3:2
B、
5
:2
C、
5
2
D、5:4
分析:过O点作OE⊥AB,E点为垂足,连OC,OA,则OE=1,而AB=4,CD=2,由垂径定理得到CE=1,AE=2,在Rt△OCE中和在Rt△OAE中,分别利用勾股定理求出OC,OA,然后计算它们的比值即可.
解答:精英家教网解:过O点作OE⊥AB,E点为垂足,连OC,OA,如图,
则OE=1,
∵OE⊥AB,
∴CE=DE,AE=BE,
而AB=4,CD=2,
∴CE=1,AE=2,
在Rt△OCE中,OC=
OE2+CE2
=
12+12
=
2

在Rt△OAE中,OA=
OE2+AE2
=
12+22
=
5

∴OC:OA=
2
5

即两个同心圆的半径之比为
2
5

故选C.
点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网