题目内容

如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF. 求证:RT△BCE≌RT△DCF.

证明:
连接BD,
∵AB=AD,
∴∠ABD=∠ADB,
∵∠ABC=∠ADC=90°,
∴∠CBD=∠CDB,
∴BC=DC,
∵BE⊥EF,DF⊥EF,
∴∠E=∠F=90°,
在Rt△BCE和Rt△DCF中

∴Rt△BCE≌Rt△DCF(HL).
分析:连接BD,根据等腰三角形的性质和判定,求出BC=DC,根据直角三角形全等的判定定理HL推出两三角形全等即可.
点评:本题考查了等腰三角形的性质和判定,直角三角形全等的判定的应用,主要培养学生运用定理进行推理的能力,题型较好,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网