题目内容

【题目】已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1, ).
(1)求点P,Q的坐标;
(2)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.
①求抛物线C′的解析式;
②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.

【答案】
(1)

解:∵y=x2﹣2x+1=(x﹣1)2

∴顶点P(1,0),

∵当x=0时,y=1,

∴Q(0,1)


(2)

解:①设抛物线C′的解析式为y=x2﹣2x+m,

∴Q′(0,m)其中m>1,

∴OQ′=m,

∵F(1, ),

过F作FH⊥OQ′,如图:

∴FH=1,Q′H=m﹣

在Rt△FQ′H中,FQ′2=(m﹣ 2+1=m2﹣m+

∵FQ′=OQ′,

∴m2﹣m+ =m2

∴m=

∴抛物线C′的解析式为y=x2﹣2x+

②设点A(x0,y0),则y0=x02﹣2x0+

过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),

∴AN=y0﹣n,其中y0>n,

连接FP,

∵F(1, ),P(1,0),

∴FP⊥x轴,

∴FP∥AN,

∴∠ANF=∠PFN,

连接PK,则直线Q′F是线段PK的垂直平分线,

∴FP=FK,有∠PFN=∠AFN,

∴∠ANF=∠AFN,则AF=AN,

根据勾股定理,得,AF2=(x0﹣1)2+(y02

∴(x0﹣1)2+(y02=(x ﹣2x0+ )+y ﹣y0=y

∴AF=y0

∴y0=y0﹣n,

∴n=0,

∴N(x0,0),

设直线Q′F的解析式为y=kx+b,

解得

∴y=﹣ x+

由点N在直线Q′F上,得,0=﹣ x0+

∴x0=

将x0= 代入y0=x ﹣2x0+

∴y0=

∴A(


【解析】此题是二次函数综合题,主要考查了待定系数法求解析式,线段的垂直平分线的判定和性质,解本题的关键是灵活运用勾股定理.(1)令x=0,求出抛物线与y轴的交点,抛物线解析式化为顶点式,求出点P坐标;(2)①设出Q′(0,m),表示出Q′H,根据FQ′=OQ′,用勾股定理建立方程求出m,即可.②根据AF=AN,用勾股定理,(x﹣1)2+(y﹣ 2=(x2﹣2x+ )+y2﹣y=y2 , 求出AF=y,再求出直线Q′F的解析式,即可.
【考点精析】根据题目的已知条件,利用线段垂直平分线的判定的相关知识可以得到问题的答案,需要掌握和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网