题目内容

四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为49,大正方形面积为169,直角三角形中较小的锐角为θ,那么sinθ的值(  )
分析:已知正方形的面积即可求出边长.根据勾股定理求出直角三角形的边长,即可求解.
解答:解:由题意知,小正方形的边长为7,大正方形的边长为13.
设直角三角形中较小的边的边长为x,
则有(7+x)2+x2=169.
解得x=5(负值不合题意,舍去)
∴sinθ=
5
13

故选D.
点评:此题考查了三角函数的定义和勾股定理知识点,难度中等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网