题目内容
【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.
【答案】(1)图见解析,A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)+3.
【解析】
试题分析:(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.
试题解析:(1)所求作△A1B1C如图所示:
由A(4,3)、B(4,1)可建立如图所示坐标系,
则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);
(2)∵AC= ,∠ACA1=90°
∴在旋转过程中,△ABC所扫过的面积为:
S扇形CAA1+S△ABC
= + ×3×2
= +3.
练习册系列答案
相关题目