题目内容
如图,点C在线段AB上,△ADC和△CEB都是等边三角形,连接AE交DC于N,连接BD交EC于M.则△MCB可看作是由△NCE经过旋转而得到的.请回答下列问题:
(1)旋转中心点是______;
(2)旋转角的度数是______;
(3)连接MN,则△MNC是什么三角形______;
(4)△DCB和△ACE是否全等,为什么?
(1)旋转中心点是______;
(2)旋转角的度数是______;
(3)连接MN,则△MNC是什么三角形______;
(4)△DCB和△ACE是否全等,为什么?
(1)∵△MCB与△NCE的公共点为C点,
∴旋转中心点是C;
(2)∵△ADC和△CEB都是等边三角形,
∴∠DCE=60°,
∵图形旋转后MC与NC重合,
∴旋转角的度数是60°;
(3)∵△MCB可看作是由△NCE经过旋转而得到的,
∴△MCB≌△NCE,
∴NC=MC,
∵∠DCE=60°,
∴△MNC是等边三角形;
(4)∵△ACD与△BCE均是等边三角形,
∴AC=CD,BC=CE,∠ACD=BCE=60°,
∴∠ACE=∠DCB=120°,
∴△DCB≌△ACE.
∴旋转中心点是C;
(2)∵△ADC和△CEB都是等边三角形,
∴∠DCE=60°,
∵图形旋转后MC与NC重合,
∴旋转角的度数是60°;
(3)∵△MCB可看作是由△NCE经过旋转而得到的,
∴△MCB≌△NCE,
∴NC=MC,
∵∠DCE=60°,
∴△MNC是等边三角形;
(4)∵△ACD与△BCE均是等边三角形,
∴AC=CD,BC=CE,∠ACD=BCE=60°,
∴∠ACE=∠DCB=120°,
∴△DCB≌△ACE.
练习册系列答案
相关题目